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Classification of eight-vertex solutions of the coloured
Yang–Baxter equation

Shi-kun Wang†‡
Department of Pure Mathematics, The University of Adelaide, SA 5005, Australia

Received 26 September 1995

Abstract. In this paper all eight-vertex type solutions of the coloured Yang–Baxter equation
dependent on spectral as well as colour parameters are given. It is proved that they are composed
of three groups of basic solutions, three groups of their degenerate forms and two groups of
trivial solutions up to five solution transformations. Moreover, all non-trivial solutions can be
classified into two types called Baxter type and free-fermion type.

0. Introduction

The Yang–Baxter or triangle equation which first appeared in [1–3] plays a prominent role
in many branches of physics, for instance, in factorizedS-matrices [4], exactly solvable
models of statistical physics [5], complete integrable quantum and classical systems [6],
quantum groups [7], conformal field theory and link invariants [8–11], to name just a few.
In view of the importance of the Yang–Baxter equation, much attention has been directed
to the search for solutions of the equation.

The coloured Yang–Baxter equation dependent on spectral as well as colour parameters
is a generalization of the usual Yang–Baxter equation. It has also attracted a lot of research
interest (see [12–16]) to find exact solutions for this type of Yang–Baxter equation. This is
because the coloured Yang–Baxter equation concerns the free-fermion model in a magnetic
field, multi-variable invariants of links and representations of quantum algebras and so on
(see [17–21]).

The eight-vertex type solution of the coloured Yang–Baxter equation has been
investigated previously in [12, 17, 20]. In [17] Fan and Wu first provided a single relation
between the eight vertex weights in the general eight-vertex model by the pfaffian or dimer
method, the so-called free-fermion condition. Based on this work, Bazhanov and Stroganov
obtained an eight-vertex solution for the coloured Yang–Baxter equation in [12] devoted
to the eight-vertex free-fermion model on a plane lattice. In [20] Murakami gave another
eight-vertex solution in discussing multi-variable invariants of links. These are the only two
eight-vertex solutions for the coloured Yang–Baxter equation we have known up to now.

The main theme of this paper is to give and classify all eight-vertex solutions of the
coloured Yang–Baxter equation. The way to find the solution is from a computer algebra
method given by Wu in [22]. Moreover, a theorem in [22] can prove that all solutions
can be obtained by Wu’s method. The paper is organized as follows. In section 1 we will
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review the coloured Yang–Baxter equation which in fact is a matrix equation. If the equation
is expressed in component form it is composed of 28 polynomial equations in the eight-
vertex case. We first introduce the symmetries or solution transformation for this system
of equations and some concepts, including Hamiltonian coefficients, initial value condition,
unitary condition and non-trivial gauge solution of the coloured Yang–Baxter equation.
Using the symmetries we can simplify the system of equations as 12 polynomial equations.
In section 2 we will apply the computer algebra method to 12 polynomial equations to get the
algebraic curves and differential equations satisfied by the eight-vertex-type solution of the
coloured Yang–Baxter equation. In this section we will also give two relations satisfied by
the Hamiltonian coefficient which will play an important role in the classification of eight-
vertex solutions of the coloured Yang–Baxter equation. Based on section 2, in section 3 we
will construct all non-trivial gauge eight-vertex-type solutions of the coloured Yang–Baxter
equation and classify them into two types called Baxter and free-fermion type. Section 4
is devoted to general solutions and the relation between Hamiltonian coefficients and spin-
chain Hamiltonian. In sections 3 and 4 we will also show that the two solutions which
appeared in [12] and [20] are special cases of the general solutions obtained in this paper.

In this paper a symbolic computation will be applied to accomplish some tedious
computations and results obtained by computer calculations will be denoted by the symbol∗.

1. The coloured Yang–Baxter equation, its symmetry and initial condition

By coloured Yang–Baxter equation we mean the following matrix equation

Ř12(u, ξ, η)Ř23(u + v, ξ, λ)Ř12(v, η, λ) = Ř23(v, η, λ)Ř12(u + v, ξ, λ)Ř23(u, ξ, η)

Ř12(u, ξ, η) = Ř(u, ξ, η) ⊗ E Ř23(u, ξ, η) = E ⊗ Ř(u, ξ, η) (1.1)

whereŘ(u, ξ, η) is a matrix function ofN2 dimension ofu, ξ andη, E is the unit matrix of
orderN and⊗ means the tensor product of two matrices.u, v are called spectral parameters
and ξ , η coloured parameters. If the matrix is independent of coloured parameters, then
the coloured Yang–Baxter equation (1.1) will become the usual Yang–Baxter equation. If
it is independent of spectral parameters then (1.1) will be reduced to the pure coloured
Yang–Baxter equation:

Ř12(ξ, η)Ř23(ξ, λ)Ř12(η, λ) = Ř23(η, λ)Ř12(ξ, λ)Ř23(ξ, η). (1.2)

For the coloured Yang–Baxter equation (1.1), the main interest in the paper is to discuss
the solutions with the following form:

Ř(u, ξ, η) =


R11

11(u, ξ, η) 0 0 R11
22(u, ξ, η)

0 R12
12(u, ξ, η) R12

21(u, ξ, η) 0

0 R21
12(u, ξ, η) R21

21(u, ξ, η) 0

R22
11(u, ξ, η) 0 0 R22

22(u, ξ, η)

 . (1.3)

The eight weight functions in (1.3) are denoted by

a1(u, ξ, η) = R11
11(u, ξ, η) a5(u, ξ, η) = R12

21(u, ξ, η)

a2(u, ξ, η) = R12
12(u, ξ, η) a6(u, ξ, η) = R21

12(u, ξ, η)

a3(u, ξ, η) = R21
21(u, ξ, η) a7(u, ξ, η) = R11

22(u, ξ, η)

a4(u, ξ, η) = R22
22(u, ξ, η) a8(u, ξ, η) = R22

11(u, ξ, η).

We call solution (1.3) the eight-vertex-type solution if it satisfies in additionai(u, ξ, η) 6≡ 0
(i = 1, 2, . . . , 8). Further, we only consider the solutions which are meromorphic functions
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of u, ξ andη. For notational simplicity, throughout this paper let

ui = ai(u, ξ, η) vi = ai(v, η, λ) wi = ai(u + v, ξ, λ) i = 1, 2, . . . , 8.

For eight-vertex-type solutions, the matrix equation (1.1) is equivalent to the following 28
equations:

u7w3v8 − u8w2v7 = 0
u7w8v3 − u8w7v2 = 0
u2w3v2 − u3w2v3 = 0
u2w8v7 − u3w7v8 = 0

 (1.4a)

u1w5v2 + u7w8v6 − v2w1u5 − v5w2u3 = 0
u1w1v7 + u7w3v4 − v7w5u5 − v1w7u3 = 0
u2w6v1 + u5w7v8 − v6w1u2 − v3w2u6 = 0
u1w2v1 + u7w4v8 − v2w1u2 − v5w2u6 = 0
u1w7v5 + u7w6v3 − v7w5u2 − v1w7u6 = 0
u1w7v2 + u7w6v6 − v1w1u7 − v7w2u4 = 0


(1.4b)

u4w6v2 + u7w8v5 − v2w4u6 − v6w2u3 = 0
u4w4v7 + u7w3v1 − v7w6u6 − v4w7u3 = 0
u2w5v4 + u6w7v8 − v5w4u2 − v3w2u5 = 0
u4w2v4 + u7w1v8 − v2w4u2 − v6w2u5 = 0
u4w7v6 + u7w5v3 − v7w6u2 − v4w7u5 = 0
u4w7v2 + u7w5v5 − v4w4u7 − v7w2u1 = 0


(1.4c)

u1w5v3 + u8w7v6 − v3w1u5 − v5w3u2 = 0
u1w1v8 + u8w2v4 − v8w5u5 − v1w8u2 = 0
u3w6v1 + u5w8v7 − v6w1u3 − v2w3u6 = 0
u1w3v1 + u8w4v7 − v3w1u3 − v5w3u6 = 0
u1w8v5 + u8w6v2 − v8w5u3 − v1w8u6 = 0
u1w8v3 + u8w6v6 − v1w1u8 − v8w3u4 = 0


(1.4d)

u4w6v3 + u8w7v5 − v3w4u6 − v6w3u2 = 0
u4w4v8 + u8w2v1 − v8w6u6 − v4w8u2 = 0
u3w5v4 + u6w8v7 − v5w4u3 − v2w3u5 = 0
u4w3v4 + u8w1v7 − v3w4u3 − v6w3u5 = 0
u4w8v6 + u8w5v2 − v8w6u3 − v4w8u5 = 0
u4w8v3 + u8w5v5 − v4w4u8 − v8w3u1 = 0.


(1.4e)

Assume Ř(u, ξ, η) is a solution of (1.1). Having carefully studied the system of
equations (1.4), we find there are five symmetries for eight-vertex-type solutions of the
coloured Yang–Baxter equation (1.1).

(A) Symmetry of interchanging indices.The system of equations (1.4) is invariant if
we interchange the two sub-indices 2 and 3 as well as the two sub-indices 7 and 8 or the
sub-indices 1 and 4 as well as the two sub-indices 5 and 6.

(B) The scaling symmetry.Multiplication of the solutionŘ(u, ξ, η) by an arbitrary
function g(u, ξ, η) is still a solution of the coloured Yang–Baxter equation (1.1).

(C) Symmetry of weight functions.If the weight functionsa2(u, ξ, η), a3(u, ξ, η),
a7(u, ξ, η) anda8(u, ξ, η) are replaced by the new weight functions

ā2(u, ξ, η) = N(ξ)

N(η)
a2(u, ξ, η) ā3(u, ξ, η) = N(η)

N(ξ)
a3(u, ξ, η)

ā7(u, ξ, η) = sN(η)N(ξ)a7(u, ξ, η) ā8(u, ξ, η) = 1

sN(η)N(ξ)
a8(u, ξ, η)
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respectively, ora5(u, ξ, η) and a6(u, ξ, η) by −a5(u, ξ, η) and −a6(u, ξ, η), whereN(ξ)

is an arbitrary function of coloured parameter ands is a complex constant, the new matrix
Ř(u, ξ, η) is still a solution of (1.1).

(D) Symmetry of spectral parameter.If we take a new spectral parameterū = µu where
µ is a complex constant independent of spectral and coloured parameters, the new matrix
Ř(u′, ξ, η) is still a solution of (1.1).

(E) Symmetry of colour parameters.If we take new coloured parametersζ = f (ξ),
θ = f (η), wheref (ξ) is an arbitrary function, then the new matrix̌R(u, ζ, θ) is also a
solution of (1.1).

The five symmetries (A)–(E) are called solution transformationsA–E of eight-vertex-
type solutions of the coloured Yang–Baxter equation (1.1), respectively.

Dividing both sides of the third equation of (1.4a) by a2(u, ξ, η)a2(u+v, ξ, λ)a2(v, η, λ),
we get

f (u + v, ξ, λ) = f (u, ξ, η)f (v, η, λ) (1.5)

wheref (u, ξ, η) = a3(u, ξ, η)/a2(u, ξ, η). Puttingu = v = η = 0 in (1.5) we have

f (0, ξ, λ) = f (0, ξ, 0)f (0, 0, λ).

Substituting this formula into the one obtained by takingu = v = ξ = 0 in (1.5) we get

f (0, 0, λ) = f (0, 0, η)f (0, η, λ) = f (0, 0, η)f (0, η, 0)f (0, 0, λ).

This means

f (0, η, 0)f (0, 0, η) = 1.

Otherwise, it is easy to show thatf (u, ξ, η) = 0, i.e.a3(u, ξ, η) = 0. Therefore

f (0, ξ, η) = M(ξ)

M(η)
(1.6)

whereM(ξ) = f (0, ξ, 0). On the other hand, if we differentiate both sides of (1.5) with
respect to the spectral variablev and then setv = 0, λ = η, then

f ′(u, ξ, η) = f ′(0, η, η)f (u, ξ, η) (1.7a)

holds, where the dot means derivative with respect tou and the simple formula

dG(u + v)

dv

∣∣∣∣
v=0

= dG(u)

du

for any functionG(u), is used. Similarly, one also has

f ′(v, ξ, λ) = f ′(0, ξ, ξ)f (v, ξ, λ) (1.7b)

if we differentiate both sides of (1.5) with respect tou and then setu = 0 andη = ξ . The
two formulae above implyf ′(0, ξ, ξ) is a constant independent of coloured parameterξ .
Hence

f (u, ξ, η) = M(ξ)

M(η)
exp(νu) (1.8)

whereν is a complex constant.
From the group of equations (1.4a) we have

f (u, ξ, η)h(v, η, λ) = h(u + v, ξ, λ) (1.9a)

f (u, ξ, η)f (v, η, λ) = f (u + v, ξ, λ) (1.9b)

h(u, ξ, η) = h(u + v, ξ, λ)f (v, η, λ) (1.9c)

h(u, ξ, η) = f (u + v, ξ, λ)h(v, η, λ) (1.9d)
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wheref (u, ξ, η) = a3(u, ξ, η)/a2(u, ξ, η), h(u, ξ, η) = a8(u, ξ, η)/a7(u, ξ, η). If we let
v = 0 andλ = 0 in (1.9d) then

h(u, ξ, η) = f (u, ξ, 0)h(0, η, 0).

Substituting this into (1.9c) and using (1.9b), one obtains

f (u, ξ, 0)h(0, η, 0) = f (u, ξ, 0)f (v, 0, 0)h(0, λ, 0)f (v, η, λ)

or

h(0, η, 0) = f (v, 0, 0)h(0, λ, 0)f (v, η, λ).

This formula impliesν = 0 in (1.8) and then one can obtain

f (u, ξ, η) = M(ξ)

M(η)
h(u, ξ, η) = lM(ξ)M(η)

wherel is a complex constant independent of spectral and coloured parameters.
So, up to the solution transformationB andC one can assume

a3(u, ξ, η) = a2(u, ξ, η) = 1 a8(u, ξ, η) = a7(u, ξ, η)

without losing generality. The case (1.4a)–(1.4d) can be simplified to the following 12
equations,

a5(v, η, λ) + a5(u, ξ, η)a1(u + v, ξ, λ) − a1(u, ξ, η)a5(u + v, ξ, λ)

−a7(u, ξ, η)a7(u + v, ξ, λ)a6(v, η, λ) = 0

a7(u + v, ξ, λ)a1(v, η, λ) + a5(u, ξ, η)a5(u + v, ξ, λ)a7(v, η, λ)

−a1(u, ξ, η)a1(u + v, ξ, λ)a7(v, η, λ) − a7(u, ξ, η)a4(v, η, λ) = 0

a6(u, ξ, η) + a1(u + v, ξ, λ)a6(v, η, λ) − a6(u + v, ξ, λ)a1(v, η, λ)

−a5(u, ξ, η)a7(u + v, ξ, λ)a7(v, η, λ) = 0

a6(u, ξ, η)a5(v, η, λ) + a1(u + v, ξ, λ) − a1(u, ξ, η)a1(v, η, λ)

−a7(u, ξ, η)a4(u + v, ξ, λ)a7(v, η, λ) = 0

a6(u, ξ, η)a7(u + v, ξ, λ)a1(v, η, λ) + a5(u + v, ξ, λ)a7(v, η, λ)

−a1(u, ξ, η)a7(u + v, ξ, λ)a5(v, η, λ) − a7(u, ξ, η)a6(u + v, ξ, λ) = 0

a7(u, ξ, η)a1(u + v, ξ, λ)a1(v, η, λ) + a4(u, ξ, η)a7(v, η, λ) − a1(u, ξ, η)a7(u + v, ξ, λ)

−a7(u, ξ, η)a6(u + v, ξ, λ)a6(v, η, λ) = 0 (1.10)

plus six equations obtained by interchanging the sub-indices 1 and 4 as well as 5 and 6 in
each of equations (1.10). We call the six equationscounterpartsof (1.10).

Now we solve the equations obtained by lettingu = 0 andη = ξ in (1.10) with respect
to the variables{a1(0, ξ, ξ), a4(0, ξ, ξ), a5(0, ξ, ξ), a6(0, ξ, ξ), a7(0, ξ, ξ)}. It is easy to
prove the following.

Proposition 1.1. For a solution of equations (1.10), weight functions satisfy

a1(0, ξ, ξ) = a4(0, ξ, ξ) = 1

a5(0, ξ, ξ) = a6(0, ξ, ξ) = a7(0, ξ, ξ) = a8(0, ξ, ξ) = 0. (1.11)

Otherwise, up to the solution transformationsA–E, we have two trivial solutions of the
coloured Yang–Baxter equation (1.1). The first is

a1(u, ξ, η) = a4(u, ξ, η) = a5(u, ξ, η) = a6(u, ξ, η) = H(u, ξ, η)

a2(u, ξ, η) = a3(u, ξ, η) = a7(u, ξ, η) = a8(u, ξ, η) = 1 (1.12a)
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whereH(u, ξ, η) is an arbitrary function of spectral parameteru and coloured parameters
ξ, η and the second

a1(u, ξ, η) = a4(u, ξ, η) = a5(u, ξ, η) = −a6(u, ξ, η) = F(ξ)

F (η)
exp(u)

a1(u, ξ, η) = a2(u, ξ, η) = 1 a7(u, ξ, η) = a8(u, ξ, η) = i (1.12b)

where i2 = −1 andF(ξ) is an arbitrary function of coloured parameterξ .

Definition 1.2. By a gauge solution of the coloured Yang–Baxter equation (1.1) we
mean the solution whose weight functions satisfya2(u, ξ, η) = a3(u, ξ, η) = 1 and
a7(u, ξ, η) = a8(u, ξ, η) and the condition (1.11).

(1.11) is called an initial condition of gauge solutions. The condition is simple but very
important. It will be quoted again and again in finding gauge solutions of the coloured
Yang–Baxter equation. For example, takingv = −u, λ = ξ in (1.10) and their counterparts
and using the initial condition (1.11), one has the following equations:

a6(−u, η, ξ) = −a6(u, ξ, η)

a5(−u, η, ξ) = −a5(u, ξ, η)

1 − a1(u, ξ, η)a1(−u, η, ξ) + a6(u, ξ, η)a5(−u, η, ξ) − a7(u, ξ, η)a7(−u, η, ξ) = 0

1 − a4(u, ξ, η)a4(−u, η, ξ) + a5(u, ξ, η)a6(−u, η, ξ) − a7(u, ξ, η)a7(−u, η, ξ) = 0. (1.13)

The unitary condition of a solution of the Yang–Baxter equation means

Ř(0, ξ, ξ) = E Ř(u, ξ, η)Ř(−u, η, ξ) = g(u, ξ, η)E

whereE is the unit matrix andg(u, ξ, η) a scalar function. Hence, it is easy to get from
(1.13) that

Proposition 1.3. For gauge solutionsŘ(u, ξ, η) of the coloured Yang–Baxter equa-
tion (1.1), the unitary condition is

Ř(u, ξ, η)Ř(−u, η, ξ) = (1 − a5(u, ξ, η)a6(u, ξ, η))E.

Differentiating both sides of all equations in (1.10) and their counterparts with respect
to the variablev and lettingv = 0, λ = η, by virtue of the initial condition (1.11) one
immediately obtains

m5(η) + a5(u, ξ, η)a′
1(u, ξ, η) − a1(u, ξ, η)a′

5(u, ξ, η) − m6(η)a7(u, ξ, η)2 = 0

a′
7(u, ξ, η) + (m1(η) − m4(η))a7(u, ξ, η) + m7(η)(a5(u, ξ, η)2 − a1(u, ξ, η)2) = 0

a′
6(u, ξ, η) − m6(η)a1(u, ξ, η) + m1(η)a6(u, ξ, η) + m7(η)a5(u, ξ, η)a7(u, ξ, η) = 0

a′
1(u, ξ, η) − m1(η)a1(u, ξ, η) + m5(η)a6(u, ξ, η) − m7(η)a4(u, ξ, η)a7(u, ξ, η) = 0

a6(u, ξ, η)a′
7(u, ξ, η) − a7(u, ξ, η)a′

6(u, ξ, η) + m1(η)a6(u, ξ, η)a7(u, ξ, η)

−m5(η)a1(u, ξ, η)a7(u, ξ, η) + m7(η)a5(u, ξ, η) = 0

a7(u, ξ, η)a′
1(u, ξ, η) − a1(u, ξ, η)a′

7(u, ξ, η) + m1(η)a1(u, ξ, η)a7(u, ξ, η)

−m6(η)a6(u, ξ, η)a7(u, ξ, η) + m7(η)a4(u, ξ, η) = 0 (1.14a)

and their counterparts, where and throughout the paper we denote

a′
i (u, ξ, η) = ∂

∂u
ai(u, ξ, η) mi(ξ) = a′

i (u, ξ, η)|{u=0,η=ξ}

for i = 1, 4–7.
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We call mi(ξ) Hamiltonian coefficients of weight functions with respect to spectral
parameter or simply coefficients. Sometimes we writemi instead ofmi(ξ) for brevity.

If we differentiate (1.10) with respect tou and letu = 0, η = ξ and then replace the
variablesv andλ by u andη, then we have

m6(ξ) + a6(u, ξ, η)a′
1(u, ξ, η) − a1(u, ξ, η)a′

6(u, ξ, η) − m5(ξ)a7(u, ξ, η)2 = 0

a′
7(u, ξ, η) + (m1(ξ) − m4(ξ))a7(u, ξ, η) + m7(ξ)(a6(u, ξ, η)2 − a1(u, ξ, η)2) = 0

a′
5(u, ξ, η) − m5(ξ)a1(u, ξ, η) + m1(ξ)a5(u, ξ, η) + m7(ξ)a6(u, ξ, η)a7(u, ξ, η) = 0

a′
1(u, ξ, η) − m1(ξ)a1(u, ξ, η) + m6(ξ)a5(u, ξ, η) − m7(ξ)a4(u, ξ, η)a7(u, ξ, η) = 0

a5(u, ξ, η)a′
7(u, ξ, η) − a7(u, ξ, η)a′

5(u, ξ, η) + m1(ξ)a5(u, ξ, η)a7(u, ξ, η)

−m6(ξ)a1(u, ξ, η)a7(u, ξ, η) + m7(ξ)a6(u, ξ, η) = 0

a7(u, ξ, η)a′
1(u, ξ, η) − a1(u, ξ, η)a′

7(u, ξ, η) + m1(ξ)a1(u, ξ, η)a7(u, ξ, η)

−m5(ξ)a5(u, ξ, η)a7(u, ξ, η) + m7(ξ)a4(u, ξ, η) = 0 (1.14b)

and their counterparts.

Remark 1. In this paper, the following trick will often be employed to obtain the equations
such as (1.14a) and (1.14b). We first do the calculation with respect tov and takeλ = η

to yield some equations. Then we repeat the same operation withu in place ofv and take
η = ξ to yield another equation. Then we compare the two results to reduce some of the
formulae. For example, formula (1.8) is obtained by this method.

Comparing (1.14a) with (1.14b), we found that the trick, in fact, is to interchange
the sub-indexes 5 and 6 (or 1 and 4) and then replacemi(η) by mi(ξ) in the original
equations (1.14a). We call this tricksymmetric operation.

Remark 2. If the variable with respect to which we differentiate (1.10) is not a spectral
parameterv but a coloured parameterλ, the equations obtained are the same as (1.14a)
if we still let v = 0 and λ = η. Of course, then the dot means the derivative with
respect to the coloured parameterη, that is the second coloured variable inai(u, ξ, η), and
mi(η) = dai(v, η, λ)/dλ|v=0,λ=η. Similarly, (1.14b) also represents the equations obtained
by differentiating (1.10) with respect to the first coloured variableξ in ai(u, ξ, η), but in this
case the dot means the derivative with respect toξ andmi(ξ) = dai(u, ξ, η)/dλ|u=0,η=ξ .

2. The coefficients, curves and differential equations of weight functions

In this section we will discuss properties of Hamiltonian coefficients, curves and differential
equations satisfied by weight functions.

It follows from the second equation of (1.14a) and its counterpart that

2a′
7(u, ξ, η) + m7(η)(a5(u, ξ, η)2 + a6(u, ξ, η)2 − a1(u, ξ, η)2 − a4(u, ξ, η)2) = 0. (2.1)

If the symmetric operation is used then one also has

2a′
7(u, ξ, η) + m7(ξ)(a5(u, ξ, η)2 + a6(u, ξ, η)2 − a1(u, ξ, η)2 − a4(u, ξ, η)2) = 0. (2.2)

We know(u2
5+u2

6−u2
1−u2

4) 6≡ 0 due to the initial condition (1.11). Compared the formulae
(2.1) and (2.2), one shows

m7(ξ) = m7(η).

If m7(ξ) = 0 then

a′
7(u, ξ, η) = 0 m1(η) = m4(η)
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due to the second of (1.14a) and its counterpart. This impliesa7(u, ξ, η) is a function of
only the coloured variablesξ andη.

Proposition 2.1. For gauge eight-vertex solutions,m7(ξ) is a constant independent of
coloured parameters anda7(u, ξ, η) is independent of spectral parameter ifm7(η) = 0.

Remark 3. In fact, as mentioned in remark 2, the latter property of proposition 2.1 also
holds for coloured parameter, namely,a7(u, ξ, η) will be independent of the coloured
parameterξ (or η) if d/dξ(a7(u, ξ, η))|u=0,η=ξ = 0 (or d/dη(a7(u, ξ, η))|u=0,ξ=η = 0).

In what follows we denotem7(ξ) = α.
Furthermore, ifα = 0, lettingu = 0, η = ξ in the following equation

a′
1(u, ξ, η) = m6(η)a6(u, ξ, η) − m1(η)a1(u, ξ, η) (2.3)

which is from the sixth equation in (1.14a), we obtainm1(η) = 0 owing to the initial
condition (1.11). Thereforem4(ξ) = 0. Similarly, we have

a′
6(u, ξ, η) = m1(η)a6(u, ξ, η) − m5(η)a1(u, ξ, η) (2.4)

from the fifth equation in (1.14a) and then

m6(η) = −m5(η). (2.5)

Substitutingm6(η) = −m5(η) andm1(η) = m4(η) = 0 into the third and fourth equations
of (1.14a) and their counterparts, we have the following differential equations:

a′
1(u, ξ, η) = −m5(η)a6(u, ξ, η) a′

4(u, ξ, η) = m5(η)a5(u, ξ, η)

a′
6(u, ξ, η) = −m5(η)a1(u, ξ, η) a′

5(u, ξ, η) = m5(η)a4(u, ξ, η). (2.6)

Therefore, ifα = 0 then weight functions satisfy

d2

du2
ai(u, ξ, η) = m5(η)2ai(u, ξ, η) i = 1, 4, 5, 6. (2.7)

Furthermore, using the symmetric operation

d2

du2
ai(u, ξ, η) = m5(ξ)2ai(u, ξ, η) i = 1, 4, 5, 6 (2.8)

hold. Hencem5(η) actually is a constant independent of coloured parameters and not
identically zero, otherwise, the solutions will be independent of spectral parameter. Thus
we can letm5(η) = β.

The argument above implies the following proposition.

Proposition 2.2. For a gauge eight-vertex solution, there exists at least one between
m7(ξ) and m5(ξ) (or m6(ξ)) which is not zero identically. Otherwise, the solution will
be independent of spectral parameter.

As for the Hamiltonian coefficientsm1(ξ) andm4(ξ) we have

Proposition 2.3∗. For gauge eight-vertex solutions of the coloured Yang–Baxter
equation (1.1)

m1(ξ)2 − m4(ξ)2 = 0.
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Proof. As first step, we regard the weight functionswi (i = 1, 4–7) in (1.10)
and their counterparts as indeterminates, The left-hand side of each of (1.10) and its
counterpart are polynomial functions of the indeterminates. After eliminating the five
indeterminates{w1, w4, w5, w6, w7} in numerically increasing order with respect to the
system of equations (1.10) we can obtain seven equations which do not contain the
indeterminateswi (i = 1, 4–7). Then differentiating them with respect to the spectral
variable v, letting v = 0, λ = η and then substituting the initial values (1.11) into the
resulting ones, we obtain the following seven polynomial equations:

m7u
3
1 − m7u1u

2
5 − 3m1u1u7 + m4u1u7 − m7u4u

2
7 − m7u4 + m5u6u7 + m6u6u7 = 0

−m6u1u4 + m7u1u6u7 + m7u4u5u7 + m1u4u6 + m4u4u6 − m6u5u6 − m5u
2
7 + m6 = 0

m7u
2
1 − m7u

2
4 − m7u

2
5 + m7u

2
6 + 2m4u7 − 2m1u7 = 0

−m5u1u4 + m1u1u5 + m4u1u5 + m7u1u6u7 + m7u4u5u7 − m5u5u6 − m6u
2
7 + m5 = 0

m7u
2
1u6 − m6u1u7 − m5u1u7 − m7u

2
5u6 + m7u5u

2
7 + m7u5 + m4u6u7 + m1u6u7 = 0

m7u
3
1u5 − m6u1u4u7 − m7u1u

3
5 + 2m4u1u5u7 − 2m1u1u5u7 + m7u1u6 − m7u4u5u

2
7

+m5u5u6u7 + m6u
3
7 − m5u7 = 0

−m7u
2
1u4 + m7u1u

2
7 + m7u1 + m7u4u

2
5 + m4u4u7 + m1u4u7 − m5u5u7 − m6u5u7 = 0.

(2.9)

As a second step, we think ofmi as indeterminates and first eliminatem1, m4 and m5 to
get two systems of equations, which are equivalent to (2.9). The first is

−m5u1u4 + m1u1u5 + m4u1u5 + m7u1u6u7 + m7u4u5u7 − m5u5u6 − m6u
2
7 + m5 = 0

−m7u
3
1u5 + m7u1u

2
4u5 + 2m5u1u4u7 + m7u1u

3
5 − m7u1u5u

2
6 − 4m4u1u5u7 − 2m7u1u6u

2
7

−2m7u4u5u
2
7 + 2m5u5u6u7 + 2m6u

3
7 − 2m5u7 = 0

−m7u1u
2
4u5 + m6u1u4u7 + m7u1u5u

2
6 − m7u1u6 + m7u4u5u

2
7 − m5u5u6u7 − m6u

3
7

+m5u7 = 0. (2.10)

which containm1, m4 andm5. The second is

(u1u4 + u5u6 − u2
7 − 1)(−m7u1u

2
4u5 + m6u1u4u7 + m7u1u5u

2
6 − m7u1u6 + m7u4u5

−m6u5u6u7) = 0

u1(u1u4 + u5u6 − u2
7 − 1)(m7u1u4u

2
5 − m6u1u5u7 − m7u

2
4u5u6 + m6u4u6u7 − m7u

3
5u6

+m7u
2
5 + m7u5u

3
6 − m7u

2
6) = 0

u1(u1u4 + u5u6 − u2
7 − 1)(−m7u

3
4u5u6 + m6u

2
4u6u7 + m7u4u

2
5u

2
7 + m7u4u5u

3
6 − m7u4u

2
6

−m6u
2
5u6u7 − m6u5u

3
7 + m6u5u7) = 0

u1(u1u4 + u5u6 − u2
7 − 1)(−m7u1u

2
5u6 + m7u1u5 − m7u

3
4u5 + m6u

2
4u7 + m7u4u

3
5

+m7u4u5u
2
6 − m7u4u6 − m6u

2
5u7) = 0 (2.11)

which do not containm1, m4 andm5. So the free-fermion condition [17]

u1u4 + u5u6 − 1 − u2
7 = 0 (2.12)

or

−m7u1u
2
4u5 + m6u1u4u7 + m7u1u5u

2
6 − m7u1u6 + m7u4u5 − m6u5u6u7 = 0

m7u1u4u
2
5 − m6u1u5u7 − m7u

2
4u5u6 + m6u4u6u7 − m7u

3
5u6 + m7u

2
5 + m7u5u

3
6 − m7u

2
6 = 0

−m7u
3
4u5u6 + m6u

2
4u6u7 + m7u4u

2
5u

2
7 + m7u4u5u

3
6 − m7u4u

2
6 − m6u

2
5u6u7 − m6u5u

3
7

+m6u5u7 = 0
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−m7u1u
2
5u6 + m7u1u5 − m7u

3
4u5 + m6u

2
4u7 + m7u4u

3
5 + m7u4u5u

2
6 − m7u4u6

−m6u
2
5u7 = 0 (2.13)

will hold. In the third step, applying the fourth equation in (2.13) as a main equation to
kill the indeterminatem6 in the three equations remaining in (2.13) and then performing
factorization of the new polynomial equations after killingm6, one can obtain that

−m7u1u
2
5u6 + m7u1u5 − m7u

3
4u5 + m6u

2
4u7 + m7u4u

3
5 + m7u4u5u

2
6 − m7u4u6

−m6u
2
5u7 = 0

m7(u5u6 − 1)(u2
1u5 − 2u1u4u6 + u2

4u5 − u3
5 + u5u

2
6)u5 = 0

m7(u5u6 − 1)(−u1u
2
4u6 + u1u

2
5u6 + u1u5u

2
7 − u1u5 + u3

4u5 − u4u
3
5 − u4u6u

2
7

+u4u6)u5 = 0

m7(u5u6 − 1)(−u2
1u4 + 2u1u5u6 + u3

4 − u4u
2
5 − u4u

2
6)u5 = 0 (2.14)

is equivalent to (2.13). It follows from the first equation of (2.14) thatm7 6≡ 0. Otherwise,
thanks to proposition 2.2,a4(u, ξ, η)2 = a5(u, ξ, η)2. The latter is impossible thanks to the
initial condition (1.11). Hence the following three equations

u2
1u5 − 2u1u4u6 + u2

4u5 − u3
5 + u5u

2
6 = 0

−u1u
2
4u6 + u1u

2
5u6 + u1u5u

2
7 − u1u5 + u3

4u5 − u4u
3
5 − u4u6u

2
7 + u4u6 = 0

−u2
1u4 + 2u1u5u6 + u3

4 − u4u
2
5 − u4u

2
6 = 0 (2.15)

and the first of (2.14) is equivalent to (2.14), where we use the initial condition (1.11) again
to yield 1− u5u6 6≡ 0.

Finally, if we differentiate (2.12) and the third equation of (2.15) with respect tou

and letu = 0, ξ = η and then apply the initial conditions (1.11) again , we come to the
conclusion of proposition 2.3. �

Remark 4. When we perform the operation of eliminating indeterminates with respect to
a system of polynomial equations, according to the theorem of zero structure of algebraic
varieties [22], the coefficient of the term with the highest degree of the indeterminate in the
main polynomial equation (to be eliminated in other polynomials) should not be identified
with zero. in the event it is identified with zero, we should add the coefficient into the
system of equations to produce a new system of equations. Otherwise, it is possible to lose
some solutions. For example, when we use the fourth equation in (2.13) to eliminatem6 in
the three remaining ones in (2.13), because the coefficient ofm6 in the fourth equation of
(2.13) isu7(u

2
4 − u2

5) which does not identify with zero due to the initial condition (1.11),
(2.14) is equivalent to the system of equations (2.13).

From the argument proving proposition 2.3 above we see the system of equations (2.9)
is equivalent to two groups of equations. The first is (2.10) and (2.15) plus the first of
(2.14). The second is (2.10) and (2.12), the free-fermion condition.

Now we consider the two cases respectively. For the first case we differentiate the
second equation in (2.15) and takeu = 0, ξ = η. Then we substitute the initial condition
(1.11) into the result to get

m5(η) = m6(η). (2.16)

By performing factorization of the equation obtained by eliminatingu4 in the third
equation of (2.15) and by using the second equation of (2.15) , we can get

2u6(u6 − u5)(u6 + u5)(u1 − u5)(u1 + u5)(u1 − u6)(u1 + u6) = 0. (2.17)
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Together, (2.17) and the initial condition (1.11) imply

a5(u, ξ, η) = a6(u, ξ, η) (2.18a)

or

a5(u, ξ, η) = −a6(u, ξ, η) (2.18b)

hold. Substituting (2.18a) into the third equation in (2.15), we then see

a1(u, ξ, η) = a4(u, ξ, η). (2.19)

Substituting (2.18a) and (2.19) into the first equation in (2.14), we have

(u5 − u1(u5 + u1)(αu5u1 − m6u7) = 0. (2.20)

So

αa1(u, ξ, η)a5(u, ξ, η) − m6(η)a7(u, ξ, η) = 0 (2.21)

where the initial condition (1.11) is used again. (2.21) impliesm6(η) 6≡ 0, or α will also
identify with zero, but this will contradict proposition 2.2. If we perform the symmetric
operation with respect to (2.21) and use (2.19), then

αa1(u, ξ, η)a5(u, ξ, η) − m6(ξ)a7(u, ξ, η) = 0 (2.22)

(2.21) and (2.22) will implym6(η) is also a constant independent of coloured parameter.
We let m5(η) = β.

If a5(u, ξ, η) = −a6(u, ξ, η) we should havem6(η) = 0 and (2.21) still holds. Then
α = 0. It is clearly impossible thanks to proposition 2.2.

Combining (2.18a), (2.19) and (2.21) with the third equation in (1.14a) we obtain

(a′
5(u, ξ, η))2 = β2 − (β2 − m1(η)2 + α2)a5(u, ξ, η)2 + α2a5(u, ξ, η)4. (2.23)

Using the symmetric operation we can showm1(η) is also a constant independent of coloured
parameter. Letm1(η) = γ . Similarly,

(a′
1(u, ξ, η))2 = β2 − (β2 − γ 2 + α2)a1(u, ξ, η)2 + α2a1(u, ξ, η)4 (2.24)

holds if we combine (2.18a), (2.19) and (2.21) with the fourth in (1.14a). Substituting
(2.16), (2.18a), (2.19) and (2.21) into the second of (2.10) we find that the algebraic curve
satisfied by the weight functionsa1(u, ξ, η) anda5(u, ξ, η) is

α2u2
1u

2
5 − β2u2

5 − β2u2
1 + 2βγu1u5 + β2 = 0. (2.25)

From the second group of equations, i.e. (2.10) and (2.12), it is easy to obtain

1 + a7(u, ξ, η)2 − a1(u, ξ, η)a4(u, ξ, η) − a5(u, ξ, η)a6(u, ξ, η) = 0

α(a1(u, ξ, η)a6(u, ξ, η) + a4(u, ξ, η)a5(u, ξ, η)) = (m5(η) + m6(η))a7(u, ξ, η)

α(a1(u, ξ, η)2 + a6(u, ξ, η)2 − a4(u, ξ, η)2 − a5(u, ξ, η)2) = 4m1(η)a7(u, ξ, η). (2.26)

Thenm1(η) + m4(η) = 0. If we perform the symmetric operation with respect to the third
equation of (2.26) then we also obtain

α(a1(u, ξ, η)2 + a5(u, ξ, η)2 − a4(u, ξ, η)2 − a6(u, ξ, η)2) = 4m1(ξ)a7(u, ξ, η). (2.27)

Letting η = ξ in the third equation in (2.26) and (2.27) we reduce to

a6(u, ξ, ξ)2 = a5(u, ξ, ξ)2. (2.28)

Therefore, (2.16) and (2.28) give the following proposition.
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Proposition 2.4. For gauge eight-vertex solutions of the coloured Yang–Baxter
equation (1.1) the Hamiltonian coefficientsm5(η) andm6(η) satisfy

m5(η)2 − m6(η)2 = 0.

From (2.26) and the second equation in (1.14a), we can calculate that the weight function
a7(u, ξ, η) obeys

a′
7(u, ξ, η)2 = α2 − ((m5(η) + m6(η))2 − 4m2

1(η) − 2α2)a7(u, ξ, η)2 + α2a7(u, ξ, η)4.

(2.29)

Furthermore, as we said in remark 1, we can show(m5(η)2 + m6η))2 − 2m1(η)2 is a
constant independent of coloured parameter using the symmetric operation. Letδ2 =
(m5(η)2 + m6(η))2 − 2m1(η)2.

We conclude this section by the following theorem.

Theorem 2.5∗. For a gauge eight-vertex-type solution, its weight functions must satisfy
one of two systems of equations. The first is composed of (2.18a), (2.19), (2.21), (2.23),
(2.24) and (2.25). The second is composed of (2.26) and (2.29).

3. Gauge eight-vertex-type solutions

In this section sn(ζ ) and cd(ζ ) = cn(ζ )/ dn(ζ ) are Jacobian elliptic functions.
Now we describe how to write down all gauge solutions of eight-vertex type of the

coloured Yang–Baxter (1.1) and classify them into two types called Baxter type and free-
fermion type.

3.1. Baxter-type solutions

We consider the first case in theorem 2.6. Since the curve (2.25) only includes two weight
functionsa1(u, ξ, η) anda5(u, ξ, η), we can parameterizea1(u, ξ, η) anda5(u, ξ, η) as one-
parameter functions. Ifβ ± α ± γ 6= 0, (2.23) and (2.24) are elliptic differential equations.
Therefore, the solutions should be

a1(u, ξ, η) = a4(u, ξ, η) = sn(λu + F(ξ) − F(η) + µ)

sn(µ)

a2(u, ξ, η) = a3(u, ξ, η) = 1

a5(u, ξ, η) = a6(u, ξ, η) = ±sn(λu + F(ξ) − F(η))

sn(µ)

a7(u, ξ, η) = ±k sn(λu + F(ξ) − F(η)) sn(λu + F(ξ) − F(η) + µ) (3.1)

wherek, as the module of Jacobi elliptic function, is an arbitrary constant.
If β ±α±γ = 0, the elliptic solutions (3.1) will degenerate into trigonometric solutions

a1(u, ξ, η) = a4(u, ξ, η) = tan(λu + F(ξ) − F(η) + µ)

tan(µ)

a2(u, ξ, η) = a3(u, ξ, η) = 1

a5(u, ξ, η) = a6(u, ξ, η) = ± tan(λu + F(ξ) − F(η))

tan(µ)

a7(u, ξ, η) = ± tan(λu + F(ξ) − F(η)) tan(λu + F(ξ) − F(η) + µ). (3.2)

In (3.1) and (3.2)λ 6= 0, µ 6= 0 are two arbitrary constants andF(ξ) an arbitrary function.
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3.2. Free-fermion type solutions

Now we consider the second case in theorem 2.6. According to proposition 2.4 it is divided
into two subcases,m5(ξ) = m6(ξ) andm5(ξ) = −m6(ξ).

3.2.1. For the subcase ofm5(ξ) = m6(ξ). Let m5(ξ) 6≡ 0 (we will put the case of
m5(η) = 0 into the second subcase). It is clear thatα 6= 0 due to the second equation of
(2.26). For brevity we letα = 1 up to the solution transformationD. When

m5(ξ)2 − m1(ξ)2 6≡ 0

and

m5(ξ)2 − m1(ξ)2 6≡ 1

equation (2.29) is then an elliptic differential equation and, from remarks 2 and 3, and the
initial condition (1.11), should have solutions

a7(u, ξ, η) = k sn(λu + F(ξ) − F(η)) cd(λu + F(ξ) − F(η)) (3.3)

wherek, as the module of the elliptic function, andλ are two arbitrary constants andF(ξ)

is an arbitrary function with the constrictionkλ = 1.
Substituting (3.3) into the second equation of (1.14a) and its counterpart as well as the

first and second equation of (2.26) and using elliptic function identities we have

cd2 − sn2 +2m1(η)k cd sn+u2
5 − u2

1 = 0 (3.4a)

cd2 − sn2 −2m1(η)k cd sn+u2
6 − u2

4 = 0 (3.4b)

u1u4 + u5u6 − cd2 − sn2 = 0 (3.4c)

u1u6 + u4u5 − 2m5(η)k cd sn= 0 (3.4d)

wherem5(η) andm1(η) are arbitrary functions satisfying

m5(η)2 − m1(η)2 = 1

k2
.

In the formulae (3.4) and in what follows we simply write sn and cd instead of elliptic
functions sn(λu+F(ξ)−F(η)) and cd(λu+F(ξ)−F(η)) for brevity. Using the symmetric
operation we also have

cd2 − sn2 +2m4(ξ)k cd sn+u2
5 − u2

4 = 0.

Sincem1(ξ) + m4(ξ) = 0 one obtains

cd2 − sn2 −2m1(ξ)k cd sn+u2
5 − u2

4 = 0. (3.4e)

From (3.4c), (3.4d) and (3.4a) one also obtains

−(cd2 + sn2)u1 + (cd2 − sn2 +2m1(η)k sn cd)u4 + 2m5(η)k sn cdu5 = 0. (3.5a)

If we do the symmetric operation with respect to the counterpart of (3.5a) then

−(cd2 + sn2)u4 + (cd2 − sn2 −2m1(ξ)k sn cd)u1 + 2m5(ξ)k sn cdu5 = 0. (3.5b)

Similarly, one has

(sn2 +2m1(η)k sn cd− cd2)u5 − (cd2 + sn2)u6 + 2m5(η)k sn cdu4 = 0 (3.6a)

(sn2 +2m1(ξ)k cd sn− cd2)u6 + (cd2 + sn2)u5 + 2m5(ξ)k cd snu4 = 0. (3.6b)
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Solving the equations (3.5a), (3.5b), (3.6a) and (3.6b) with respect to{u1, u4, u5, u6} we
have

a4(u, ξ, η)

a1(u, ξ, η)
= H4

H1

a6(u, ξ, η)

a5(u, ξ, η)
= H6

H5

where

H1 = (m5(ξ) + m5(η)) cd+(m1(ξ)m5(η) + m5(ξ)m1(η))k sn

H4 = (m5(ξ) + m5(η)) cd−(m1(ξ)m5(η) + m5(ξ)m1(η))k sn

H5 = (m5(ξ) + m5(η)) sn+(m1(ξ)m5(η) − m5(ξ)m1(η))k cd

H6 = (m5(ξ) + m5(η)) sn−(m1(ξ)m5(η) − m5(ξ)m1(η))k cd. (3.6)

Let u1 = H1X, u4 = H4X andu5 = H5Y , u6 = H6Y . From (3.4a) and (3.4e) one obtains

(H 2
1 − H 2

4 )X2 = 4(m5(ξ) + m5(η))(m5(η)m1(ξ) + m5(ξ)m1(η))k sn cdX2

= 2(m1(ξ) + m1(η)k sn cd

(H 2
5 − H 2

6 )Y 2 = 4(m5(ξ) + m5(η))(m5(η)m1(ξ) − m5(ξ)m1(η))k sn cdY 2

= 2(m1(ξ) − m1(η))k sn cd. (3.7)

It is easy to show usingm5(ξ)2 − m1(ξ)2 = 1/k2 that

X2 = m1(ξ) + m1(η)

2(m5(ξ) + m5(η))(m1(ξ)m5(η) + m5(x)m1(η))

= 1 + k2(m5(ξ)m5(η) − m1(ξ)m1(η))

2(m5(ξ) + m5(η))2

= −1 + k2(m5(ξ)m5(η) + m1(ξ)m1(η))

2(m1(ξ)m5(η) + m5(ξ)m1(η))2k2

Y 2 = m1(ξ) − m1(η)

2(m5(ξ) + m5(η))(m1(ξ)m5(η) − m5(x)m1(η))

= 1 + k2(m5(ξ)m5(η) + m1(ξ)m1(η))

2(m5(ξ) + m5(η))2

= −1 + k2(m5(ξ)m5(η) − m1(ξ)m1(η))

2(m1(ξ)m5(η) − m5(ξ)m1(η))2k2
.

Hence gauge solutions of the coloured Yang–Baxter equation (1.1) should obey the following
forms,

a1(u, ξ, η) = A(ξ, η) cd(λu + F(ξ) − F(η)) + B(ξ, η) sn(λu + F(ξ) − F(η))

a2(u, ξ, η) = a3(u, ξ, η) = 1

a4(u, ξ, η) = A(ξ, η) cd(λu + F(ξ) − F(η)) − B(ξ, η) sn(λu + F(ξ) − F(η))

a5(u, ξ, η) = C(ξ, η) sn(λu + F(ξ) − F(η)) + D(ξ, η) cd(λu + F(ξ) − F(η))

a6(u, ξ, η) = C(ξ, η) sn(λu + F(ξ) − F(η)) − D(ξ, η) cd(λu + F(ξ) − F(η))

a7(u, ξ, η) = ±k sn(λu + F(ξ) − F(η)) cd(λu + F(ξ) − F(η)) (3.8)

wherek, as the module of the elliptic functions, is an arbitrary constant and

A(ξ, η) =
√

(1 + G(ξ)G(η) − H(ξ)H(η))/2

B(ξ, η) =
√

(−1 + G(ξ)G(η) + H(ξ)H(η))/2

C(ξ, η) = δ
√

(1 + G(ξ)G(η) + H(ξ)H(η))/2

D(ξ, η) = δ
√

(−1 + G(ξ)G(η) − H(ξ)H(η))/2M (3.9)
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whereδ2 = 1 and

M = H(ξ)G(η) − G(ξ)H(η)√
(H(ξ)G(η) − G(ξ)H(η))2

andG(ξ), H(ξ) satisfyG(ξ)2 − H(ξ)2 = 1. If we consider the solution transformationD
then the restrictive conditionkλ = 1 can be cancelled, namely,λ 6= 0 is also an arbitrary
constant.

When the modulek = 1 the Jacobian elliptic functions cd and sn should degenerate
into 1 and tanh. Hence, we have

a1(u, ξ, η) = A(ξ, η) + B(ξ, η) tanh(λu + F(ξ) − F(η))

a2(u, ξ, η) = a3(u, ξ, η) = 1

a4(u, ξ, η) = A(ξ, η) − B(ξ, η) tanh(λu + F(ξ) − F(η))

a5(u, ξ, η) = C(ξ, η) tanh(λu + F(ξ) − F(η)) + D(ξ, η)

a6(u, ξ, η) = C(ξ, η) tanh(λu + F(ξ) − F(η)) − D(ξ, η)

a7(u, ξ, η) = ± tanh(λu + F(ξ) − F(η)) (3.10)

whereA(ξ, η), B(ξ, η), C(ξ, η) andD(ξ, η) are defined by (3.9) andλ 6= 0 is an arbitrary
constant.

If m5(η)2 − m1(η)2 = 0 then the differential equation (2.29) can be rewritten as

a′
7(u, ξ, η)2 = α2(1 + 2a7(u, ξ, η)2 + a7(u, ξ, η)4).

So, following the calculation of (3.8) we can show that the gauge solutions are

a1(u, ξ, η) = X

(
G(ξ) + G(η)

cos(λu + F(ξ) − F(η))
+ 2G(ξ)G(η) sin(λu + F(ξ) − F(η))

)
a2(u, ξ, η) = a3(u, ξ, η) = 1

a4(u, ξ, η) = X

(
G(ξ) + G(η)

cos(λu + F(ξ) − F(η))
− 2G(ξ)G(η) sin(λu + F(ξ) − F(η))

)
a5(u, ξ, η) = Y

(
G(ξ) − G(η)

cos(λu + F(ξ) − F(η))
+ 2G(ξ)G(η) sin(λu + F(ξ) − F(η))

)
a6(u, ξ, η) = Y

(
− G(ξ) − G(η)

cos(λu + F(ξ) − F(η))
+ 2G(ξ)G(η) sin(λu + F(ξ) − F(η))

)
a7(u, ξ, η) = ± tan(λu + F(ξ) − F(η)) (3.11)

where

X = 1

2
√

G(ξ)G(η)
Y = ±X (3.12)

andG(ξ) is an arbitrary function.

3.2.2. For the subcase ofm5(ξ) = −m6(ξ). In the case ofm5(η) = −m6(η) weight
functions of gauge solutions are

a1(u, ξ, η) = a4(u, ξ, η) = cosh(λu + F(ξ) − F(η))

cos(µu + G(ξ) − G(η))

a2(u, ξ, η) = a3(u, ξ, η) = 1

a5(u, ξ, η) = −a6(u, ξ, η) = ±sinh(λu + F(ξ) − F(η))

cos(µu + G(ξ) − G(η))

a7(u, ξ, η) = ± tan(µu + G(ξ) − G(η)) (3.13)
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whereλ and µ are two arbitrary constants, but not zero simultaneously, andF(ξ), G(ξ)

are two arbitrary functions.
To prove it we first consider the subcase ofα 6= 0. Then it follows that

a1(u, ξ, η)a6(u, ξ, η) + a4(u, ξ, η)a5(u, ξ, η) = 0

by (2.26) and

a1(u, ξ, η)a5(u, ξ, η) + a4(u, ξ, η)a6(u, ξ, η) = 0

by the symmetric operation. Sincea1(u, ξ, η) 6= −a4(u, ξ, η) owing to the initial condition
(1.11), so one can get

a1(u, ξ, η) = a4(u, ξ, η)

a5(u, ξ, η) = −a6(u, ξ, η)

a1(u, ξ, η)2 − a5(u, ξ, η)2 = 1 + a7(u, ξ, η)2 (3.14)

and thenm1(η) = 0 because of the first equation of (3.14) and the conditionm1(ξ)+m4(ξ) =
0. Then (2.29) has the solution

a7(u, ξ, η) = tan(µu + G(ξ) − G(η))

and hence (3.13) is true.
Second we consider the subcase ofα = 0. Then it follows from the argument of

proposition 2.2 in section 2 that the weight functions are

a1(u, ξ, η) = A1(ξ, η) coshu − A6(ξ, η) sinhu

a4(u, ξ, η) = A4(ξ, η) coshu + A5(ξ, η) sinhu

a5(u, ξ, η) = A5(ξ, η) coshu + A4(ξ, η) sinhu

a6(u, ξ, η) = A6(ξ, η) coshu − A1(ξ, η) sinhu

a7(u, ξ, η) = A7(ξ, η) (3.15)

where Ai(ξ, η) = ai(0, ξ, η) (i = 1, 4–7) are some functions with respect to coloured
parametersξ , η to be determinate. It is clear that,Ai(ξ, η) (i = 1, 4–7) satisfy the pure
coloured Yang–Baxter (1.2).

If we substitute the initial condition (1.11) into the ones obtained by puttingv = −u

andλ = η in the system of (1.10) and combine the resulting equation with the free-fermion
condition (2.12), one can show

a5(u, ξ, η) = −a5(−u, η, ξ) a6(u, ξ, η) = −a6(−u, η, ξ)

a7(u, ξ, η) = −a7(−u, η, ξ) a4(u, ξ, η) = a1(−u, η, ξ). (3.16)

It is easy by (3.16) to show that

A4(ξ, η) = A1(ξ, η) A6(ξ, η) = −A5(ξ, η). (3.17)

As mentioned in remark 2, all formulae obtained in this section and sections 1 and
2 should hold for the pure coloured Yang–Baxter equation (1.2) except those obtained by
using the symmetric operation. So we still should have

1 + A7(ξ, η)2 − A1(ξ, η)A4(ξ, η) − A5(ξ, η)A6(ξ, η) = 0

l7(η)(A1(ξ, η)A6(ξ, η) + A4(ξ, η)A5(ξ, η)) = (l5(η) + l6(η))A7(ξ, η)

l7(η)(A1(ξ, η)2 + A6(ξ, η)2 − A4(ξ, η)2 − A5(ξ, η)2 = 4l1(η)A7(ξ, η) (3.18)

where, as mentioned in remark 2,li(η) (i = 1, 4–7) means(∂/∂η)Ai(ξ, η)|ξ=η. Substituting
(3.17) into (3.18) we see

l5(η) + l6(η) = 0 l1(η) = 0.
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Therefore, as we did for getting (2.29) we also have(
∂

∂η
A7(ξ, η)

)2

= l7(η)(1 + 2a7(u, ξ, η)2 + a7(u, ξ, η)4) (3.19)

and then the solution forAi(ξ, η) is

A1(ξ, η) = A4(ξ, η) = cosh(F (ξ) − F(η))

cos(G(ξ) − G(η))

A5(ξ, η) = −A6(ξ, η) = sinh(F (ξ) − F(η))

cos(G(ξ) − G(η))

A7(ξ, η) = tan(G(ξ) − G(η)) (3.20)

whereF and G are two arbitrary functions of a single variable. Substituting (3.20) into
(3.15) one can say (3.13) is also true for the case ofα = 0, only µ = 0.

The description above tells us that, for the case of Hamiltonian coefficientsm5(η) =
−m6(η), the weight functions of a gauge eight-vertex-type solution must be (3.13).

Finally, straightforward calculation and computer symbolic computation can verify the
following theorem.

Theorem 3.1. Gauge eight-vertex solutions of the coloured Yang–Baxter equation (1.1) are
composed of (3.1), (3.8) and (3.13) and their degenerate forms (3.2), (3.10) and (3.11).

The solutions (3.1) and (3.2) are called Baxter-type solutions. They are just the solutions
for the ‘zero field’ eight-vertex model by Baxter [3]. The solutions (3.8), (3.13) and
their degenerate forms (3.10), (3.11) satisfy the free-fermion condition and are called free-
fermion-type solutions.

If we takeλ = 1, G(ξ) = cosh(2ξ), H(ξ) = sinh(2ξ) andF(ξ) = 0 in solution (3.8)
then (3.8) will reduce to the following solution

a1(u, ξ, η) = cosh(ξ − η) cd(u) + sinh(ξ + η) sn(u)

a4(u, ξ, η) = cosh(ξ − η) cd(u) − sinh(ξ + η) sn(u)

a5(u, ξ, η) = cosh(ξ + η) sn(u) − sinh(ξ − η) cd(u)

a6(u, ξ, η) = cosh(ξ + η) sn(u) + sinh(ξ − η) cd(u)

a7(u, ξ, η) = k sn(u) cd(u)

which is given in [20].

4. General solutions

In this paper we have shown and classified all gauge eight-vertex solutions of the coloured
Yang–Baxter equation (1.1). These gauge solutions and trivial solutions (1.12a) and (1.12b),
together with five solution transformations discussed in section 1 will give all eight-vertex-
type solutions.

If we take in (3.8) and (3.9)

G(ξ) = 1

sn(ξ)
H(ξ) = cn(ξ)

sn(ξ)
F (ξ) = 0 λ = 1

2

and the solution transformationB with

g(u, ξ, η) =
√

e(ξ) e(η) sn(ξ) sn(η)
(1 − e(u))

sn(u/2)
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where the elliptic exponential

e(ζ ) = cn(ζ ) + i sn(ζ )

then using addition theorems for elliptic functions sn(ζ ), cn(ζ ) and dn(ζ ) we can obtain
the following solution given in [12]

a1(u, ξ, η) = 1 − e(u) e(ξ) e(η)

a2(u, ξ, η) = a3(u, ξ, η) =
√

e(ξ) e(η) sn(ξ) sn(η)
(1 − e(u))

sn(u/2)

a4(u, ξ, η) = e(u) − e(ξ) e(η)

a5(u, ξ, η) = e(ξ) − e(u) e(η)

a6(u, ξ, η) = e(η) − e(u) e(ξ)

a7(u, ξ, η) = a8(u, ξ, η) = −ik
√

e(ξ) e(η) sn(ξ) sn(η)(1 − e(u)) sn(u/2)

the detailed calculations being omitted.
Similarly, all non-trivial general solutions can also be classified into two types. The

first are Baxter-type solutions if they can be obtained via gauge Baxter solutions and some
solution transformations. The second are free-fermion solutions if they can be obtained via
gauge free-fermion solutions and some solution transformations.

According to the standard method by Baxter, for a givenR-matrix the spin-chain
Hamiltonian is generally of the following form,

H =
N∑

j=1

(Jxσ
x
j σ x

j+1 + Jyσ
y

j σ
y

j+1 + Jzσ
z
j σ z

j+1 + 1
2h(σ z

j + σ z
j+1))

whereσx , σy andσ z are Pauli matrices and the coupling constants are

Jx = 1
4(m5 + m6 + m7 + m8) Jy = 1

4(m5 + m6 − m7 − m8)

Jz = 1
4(m1 − m3 + m4 − m2) h = 1

4(m1 − m3 − m4 + m2).

In this paper we have proved that the Hamiltonian coefficients of a gauge solution must
obey

m2
1 = m2

4 m2
5 = m2

6.

It follows from the solution transformationsB andD that

(m1 − m3)
2 = (m4 − m2)

2 m2
5 = m2

6

for general solutions. This clearly describes the relation between classifications of eight-
vertex-type solutions and spin-chain Hamiltonians. For example, ifJx +Jy = h, Jz = 0, i.e.
a special free-fermion model in a magnetic field, then one hasm5 = m1 −m3 = −m4 +m2.
The corresponding solution of the coloured Yang–Baxter equation should be (3.11). Then
the transfer matrix is of trigonometric function type.
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[8] Alvarez-Gauḿe L, Cómez C and Sierra G 1989Nucl. Phys.319 155; 1990Nucl. Phys.B 330 347; 1989

Phys. Lett.220 142
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